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Effect of chainlike aggregates on dynamical properties of magnetic liquids
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The effect of chain-shaped aggregates on the dynamic properties of magnetic liquids is studied under the
assumption that the chains can be modeled as straight and rigid. On the basis of microscopical analysis the
macroscopical expression for average stress tensor is obtained. The effective viscosity and viscoelastic char-
acteristics are estimated.

PACS numbds): 61.43.Hv, 75.50.Mm

[. INTRODUCTION tive viscosity of a ferroliquid with droplike aggregates has
been estimated in Ref5]. The works[6—8] are devoted to
One of the fundamental problems of the physics of magthe analysis of the effect of chainlike aggregates on the sta-
netic fluids is the determination of their macroscopical charlionary effective viscosity of ferrocolloids in linear approxi-
acteristics(functions of magnetic response, effective viscos-mation in gradient of flow velocity.
ity, etc) as functions of the microscopical characteristics of ~The primary aim of our work is to study the influence of

the system(shape, size, physical properties, and concentrachain aggregates on macroscopical rheological properties of
tion of ferroparticles, properties of a solvent ferrofluids. In order to focus our attention specifically on the

The known consistent theories of dynamic properties of1ains, we adopt the following assumptions. First, we treat
ferroliquids [1—3] deal with the very dilute systems for ferromagnetic partlples_as |dent|ca_l spheres. The magnetlc
which any interparticle interactions are negligible. However,moment of the particle is frozen to its body. The magnitude

. . . .. _'of this momentm is given and is constant. Second, we as-
these interactions may play an important, and often pr|nC|paI0 : : o L X
role in the formation of macroscopical properties of ferrocol—$ume the chains to be straight and rigid. The validity of this

loids. They lead to the occurence of long-range Correlationgssumptlon will be established below. Third, the interparticle

between positions and orientations of the particles and to glteractmn IS taken_ Into account only for the_ partlgles_placed
In one chain, the interaction between particles in different

rise of drophlge, chainlike qnd other heterogeneous 299" hains is neglected. It should be noted that for the real sys-
gates consisting of the particles. tems this approximation can be too strong and the interchain

The general statistical theory of nondilute ferrocolloids isinteractionspgan be significant. Fourth wg restrict our analv-
not developed, and hence it is impossible to study the prop- 9 j ' Y

erties of magnetic fluids with all types of inner structures on>'> to the systems in which the energy of a magnetodipole

the basis of one theoretical model. Therefore, it is reasonabl'gt('}raCtlon between neighboring particles in a chain is much

to construct models for the systems with different structure%aerggzig}gnth?tﬂﬁ];tpeea'sngﬁr?ﬁgorggr:gﬁcpr?]g'ﬂgnvé'tgfaan]ag;_
individually. Such “ideal” models must help us to under- ) ' 9 P

stand, first, what inner structures can be expected in thgCIeS in-one chain are aligned along the chain axis.

given ferrocolloid for given external conditions; second, how

these structures can affect macroscopical properties of the

system. Let us find the distribution functiog,, of the chains with

The effect of long-range interparticle correlations on mac—respect to the numberof particles in them. For this purpose

roscopical dynamic properties of homogeneous, moderatelye use the same ideas as in Ré&i.

concentrated magnetic liquids was studied4h The effec- The chains may be treated as heterogeneous fluctuations.
Using the well-known Frenkel's theory of heterofluctuations,
we can write the free energy per unit volume of the ferrocol-

*Electronic address; andrey.zubarev@usu.ru loid as follows:

II. SIZE DISTRIBUTION OF A CHAIN
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HereT is the absolute temperature in energy units, the left
term in square brackets in EL) is the entropy of a gas of
n-particle chains due to their translation motidn,is a di- S
mensionless “internal” free energy of a chainmparticles,

a is radius of the particle.

Similar to[6—8] we suggest that the neighboring particles
in a straight chain are close to each other. As it is shown in I K
Ref. [8], in the boards of this approximation the following 0 1 2
estimation is valid:

FIG. 1. The mean number of particles in a chain vs the dimen-

sinh(kn) sionless magnetic field fop=0.05. Solid line corresponds to
fo~— s(n—l)+ln—n , (2 =5, dashed line ta=3.
K
mH ) m? > ng, expls)
K=—7F7—, &= . n K@ €
T 8a°T (n)= ®)

> g, > x"sinhkn)n~t
HereH is the magnetic field, the dimensionless parameter n n
« is the ratio of the energy of interaction of a particle with .
the magnetic field to a thermal energy, and the dimensionled the absence of the field«=0)
parameter is the energy of interaction of two neighboring

particles with each other divided by a thermal energy. (n)=¢ —Xo exple), (9)
Substituting(2) into (1), we obtain Xo
- gnv sinh(«n) 1+2¢pexpe)—\1+4gpexpe)
= —_—— - _ Xo=X(k=0)= _
F Tgl gnln= (s(n 1+in— ) ) 0=X(k=0) 5 SX0)

Figure 1 illustrates the dependenciegiof on « for given ¢
and different values of.
Using standard reasonings of the theory of polymer

In an equilibrium state, the distribution functiag, should
minimize F under the normalization condition

% chains, one can show that deviation of the aggregate shape
> ngn=£, (4)  from a straight line is small if the number of the particles in
n=1 v the chain is less thaa (see details in Ref[8]). For this

reason, the condition of the validity of the model is the fol-
whereg is the volume fraction of a disperse phase. The ratiqowing inequality:(ny<e.

¢lv is the number of particles per unit volume. Let ¢, be the value of the volume concentration corre-
Minimizing (3) under(4), and carrying out some standard sponding to{n)=¢. The plot of ¢, as a function of ce foe
manipulations, we find is shown on Fig. 2. If at a giver the concentrationp
" sint ) <¢., then the model of straight aggregates may be used.
X7 sinitkn It should be noted that the similar model of a ferrocolloid
= - = + . - ;
=7 KN eXH(—e), X=expztM), ®) with chainlike aggregates was suggested in the worfopf
where\ is the Lagrange coefficient. To find it we substitute o
Eqg. (5) into (4). As a result, we get an equation far 0.4
> X"sinh(kn)=y, y=«xeexpe). (6) Mo
n=1 ~
0.2 N\
After some transformations we obtain the solution of this S -
equation: Seo
x=[2y coshk + sinhx— \/(2y coshk + sinhk)?— 4y?] .  k
_ 1 2
X(2y)~h. (7

FIG. 2. The critical volume concentration of particles for the
The mean number of particles in a chain in arbitrary mag-model of straight aggregates vs the dimensionless magnetic field.
netic field is Solid and dashed lines correspondste 5 ande =3, respectively.
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The model[9] is based on a chemical kinetics approach and d

the prime difference between this theory and ours is in the _Bna<eiek>n >>

method of estimating our free enerdy of the chain. One

may say, that our approximatig®) is the upper estimation «T H.

of the absolute value of,; the approximation of9] is a ot =——(((e)h—(edh)), hi=—r,

lower one. At the same time it seems to us that the relation 2v H

(2) is more convenient than the same one fri@hfor cal-

culations in arbitrary magnetic fields. 1 ( Iui a”k) . 1 ( Iui ‘9“k)

Ol s Bl P

1. MATHEMATICAL MODEL
Here and below

The effect of chain aggregates on rheological properties
of polar suspensionénagnetic liquids, magneto- and elec-
trorheological suspension&as studied in many workisee, (- '>>_; NV,
for example Refs[6—10]). Numerical methods were used in
Refs.[6,10]. The length of all of the chains was assumed to
be identical and known. Our aim is the analytical calculation (- - ->=f ---epn(e)de, (- ->°=f .- -epp(e)de,
of the effective functions of viscoelasticity of a ferrocolloid
with chainlike aggregates, taking into account the statistical
character of the chain length. We assume that the shear rate
is weak enough to neglect the effect of deviation from equi-

S . . . .U is average velocity of the colloid.
librium on the dimensions and shape of the chains. A condi- The unit vectore is aligned along the chain axig;, is

t!on for the Val'd'ty of this appro>§|mat|on can'be easily de normalized to the unity distribution function over ¢3(€) is
rived comparing the hydrodynamic forég,, which tends to : S
. . ) : n in an equilibrium state. Parametess,- - - {,, are deter-
decouple two particles, with the magnetic adhesion force of " . . : .
the particles,F,,. By the order of magnitudé&,~ 7,d’E mined in Ref.[11] and given in the Appendix.
P mme BY g h™ 770 In the assumptiong>>1, and e>>k, the magnetic

andF .~ 6#Te/d, whered=2a, E is the shear ratey, is the f all icles in the chai lianed al h
viscosity of a pure solveny is an average angle between the moments of al particles in the chain are aligned along the
chain axis. Hence, the equilibrium distribution function

line, connecting the centers of two neighboring particles in agoﬁ(e) coincides with that for the rigid particle with the mag-

chain, and the direction of their magnetic momefitsthe i mn. Using th -k it it
equilibrium state §=0). The condition under which the netic momenimn. Using the well-known results, we write

chain cannot be broken upks,<<F,,; the condition under

i,....k=xy,z,

which the chain is undeformed, &n)<1. The condition Pl(e) = .K—nexl;[,m(eh)]_ (11)
we are seeking is, therefore, 4 sinh(«n)
Te In order to determine the nonequilibrium functias,,
E<—o—. one needs to write and solve a corresponding Fokker-Plank
70d°(N) equation. Using our model of the chains as rigid spheroids

o . . .. and the well-known form of this equation for such particles
It can be shown that substituting in this strong mequallty(see forvéxamplgv Ref11]) wel hasg ! uch part

well-known estimations of the physical parameters of known
magnetic fluids preserves it for many real situations. Fr don oon

To incorporate the hydrodynamic interaction of the chain—— +\ (€5 ¥Ys|— €m€s€ Yms) —— + W|s€s——
with a surrounding medium we model theparticle chain as 7€ 98

a prolate spheroid with a semiminor axasand semimajor Ien
na. It is of principal importance that the volume of this —3\n&esysen—Dpkn (ejemhm—hj)£+2ejhj¢n}
spheroid is equal to the total volume of all particles in the !
cham: . _ Po, oon Pon

Using the known results of statistical hydrodynamics of ~ =D,| —- —2e,———ejes———|. (12
dilute suspensions of rigid spheroi@g®e, for examplg11]), s €5 9€jdes
we write expressions for the Cartesian components of the
average viscous stress tensoas follows: where

o=t o, (10 T Bn

D

nz—v n .
8mnyand 3\n
5= 2m0Yikt M0 "

The exact solution of this equation for arbitragn is
><<< (2an¥ik— pni€j€s)ndik¥js) + ({nt Bnkn) unknown. To find its approximation solution we use the
method of trial function. Let us write the distribution func-
X ((€i€)n ikt (ex€)n¥ji) + Bnlwij(€j€n tion in the following form:

+ wkj(€j€)n) + (Xn— 2N nBn){€iEkE|€s)nYis en=¢p[1+ai(e—(e)n) +hbi(ee—(eenn]. (13
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Herea; andb;, are components of unknown vector and ten-  8,,8, 9, .0,
sor, to be determined. 1 0.4

For these purposes let us multiply both parts of B@)
on the components of vecta and tensore;e,, and then

integrate the obtained relation over all orientationg.0As a 0.5
result, in linear approximation in the flow velocity gradient, 02
we obtain the following moment equatiofsee, for example, |- = = = = = = = - e = ——
Ref. [11]): 0 ) 5 K 0 ) 5 K
k'n o o FIG. 3. Dimensionless stationary effective viscosities as func-
d<e> _i< >+)\ - -_ee.e> ) . . | . if . . . f
dt 7, €nt An((€)n Yk~ (888N s tions of external magnetic field far=3, ¢=0.05. Solid lines cor-
respond tof, , dashed curves t6,, . (a) The field is aligned along
+ wkj<ej>ﬁ+ Dnrn(he—(exej)nh;) (14 the gradient of the flow velocity(b) along the flow velocity.
and 1 1
(_ <e>2<>g+DnKn<e>2<ez>g ay+ _)<e>2<ez>g
d<eiek>n 1 1 o Tin Tin
dt (ei&n— §5ik + N n((€€s)nVsk
2n +Dpkn(eZe?)?| 2h,,
+(ees)nysi) + wij(ejent wyj(een , ,
=[np((e5)2—2(e5e, ) —(—1)P(e,) v (16)
_2)\n<e|ekesel>g'yS]+DnKn(<ek>nh| [ n < z>n < X z>n < z>n]
and
—2(ejeienh; +(€)nhy), (15
1 1
where | J(etea+Duntaieiens— e | ]
2n T2n
1 1
Tn=3p, "7 gp x (e2e)°+ D kn(2(e2ed)°—(ele,)?) |2b,,
Substituting Eq.(13) into (14) and (15), we come to a =[Nn((eX)n—4(elel)n+(edn — (—1)P((ed)n
system of differential equations for functiorsg(t) and
b (t) corresponding to givem. After solving this system, —(e2)9)]v. (17)
we can use functiorf13) to determine the nonequilibrium o )
moments derived in E(10). Note that the linear approxi-  Substituting Eq(13) into Eq. (10), we have
mation iny;; ,w;; corresponds to the linear approximation in
a; by . T P i Oxz= 271V (18)
for the first type of flow and
IV. VISCOELASTIC PROPERTIES OF A FERROCOLLOID
T o= 212V (19

In general, the problem of calculatiry and b;; is not
difficult, however, it is very cumbersome. Here we considerfor the second one. The corresponding effective viscosities
separately some typical examples of the ferrofluid flow in they, are
linear approximation in the gradient of velocity. Let us intro-
duce the Cartesian coordinate systexny(z) and suppose _
that the axisOz is parallel to the external magnetic field 7p~ 70

(H,=H=const,H,=H,=0).
’ —(=1)PBa((e)n— (DM +2(xn—2\nBn)(esel)]

1
o { et 300 B (DD

A. Stationary flow , K - s o
We consider now two actual situations. In the first of —(=1) Z%(A1<ex>”+81<exez>“)>>}’ (20
them we consider the colloid with the velocity aligned along
the axisOXx, and its gradient directed along the a®g (i.e., ay by,
along the external fielth). In the second one the velocity is Alzz’ Blzzg’ p=12.
aligned alongOz, and its gradient alon@®x.
Let v=vy,,= ¥,x= — (—1)Pw,,= (— 1)Pw,, (here and be- Let us introduce the dimensionless effective viscosities

low p=1 for the first above mentioned situation=2 for  6,=(#5,— 7o)/ 7, and the same quantitigk, for the colloid
the second oneFor these stationary types of flow the equa-containing only single particlegvithout chaing. The depen-
tions (13)—(15) in the linear approximation iny;; and wj; dencies off, as well asf,,_on the dimensionless field are
lead to the following system of equations with respecafo given in Fig. 3. The main conclusion following from these
andb,, (the other components; andb;; are now equal to results is that even short chairisee Fig. 1 increase the
zero: effective viscosities significantly. The magnetoviscous ef-
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fects in nondilute ferrofluids have been observed in many 4| ’

experimentgsee, for example, Ref12]). Our results show o6

that the chainlike aggregates can be physical in nature ir

these phenomena. 04

The nonmonotonic dependencef on « is explained as

follows. When the order of the chain orientation is weak, an \\

increase in their concentration with the external field in- ** [~ == = === %

creases the effective viscosity of the system. However, wher

elongated particles(for example, chains are oriented I ol 0 ! 5 ol

strongly along the velocity of the suspension, their hydrody- ° ! 2

namic resistance is less than the same for the single spherical

particles with the same summing volume. For this reason, ) : ; . :

when the field is strong enough and the chains with a hig omplex effective wscosn.y vs thg dimensionless flowlfrequency

accuracy are oriented along the suspension velocity, the in: "=Q/D,. The external field is aligned along the gradient of the
- T I?w velocity, e =3, ¢=0.05. Solid and dashed lines correspond to

crease of the field leads to a decrease of the concentration of 7 X

. . . x=1 andx=0.5, respectively.
single particles and, as a result, to a decrease of the wscosfy

72-

0.6

FIG. 4. (a) Real and(b) imaginary parts of the dimensionless

Here Q is the Fourier frequency. Let;,=Ren;, and
710=—IMmn.q be the real and imaginary parts of the effec-

E o | der th loid fi hen i tive complex viscosity of the colloid, respectivelyd;
or example, let us consider the colloid flow when 'tsz(ﬂin—770)/71019'1'=(7I'1’Q—770)/770 and 6}, ,0], are the

velocity is parallel to the axi®x, and its gradient is aligned same as for the colloid with the single particles
along Oz. Using the Fourier transformations over time of Th " —
; g e dependences @f and ] on () are presented in Fig.
Egs. (10), (14), and(15) and using for the Fourier compo- 4 The sar?we results fﬁ’ P lare ven Fr)1 Fia 5 n g
nents of physical values with the same notations as for their u 71l given In F1g. o.
phy The comparison of the results on these figures shows that

originals, we come to the following system fay andb: chainlike aggregates increase both the real and imaginary
1 parts of the effective viscosity and significantly decrease the
iQ+—) flow frequency corresponding to a maximum &f. We
T1n . .
would like to emphasize that the mean numbe) of the
particles in aggregates for situations corresponding to Fig. 4
2by, is not large(see Fig. 1. Consequently, even the short chains
are able to increase greatly the characteristic time of hydro-
=[\n((eD)°—2(ee,)0) +(e,) v, (21)  dynamic relaxation.
For zero magnetic field one can obtain the following short

B. Nonstationary flow

1
iQ+T— (e2)°+ D kn(e’e,)|a,+
in

X <e>2<ez>g+ DnKn<e>2<e§>g

1 expression for the complex effective viscosity:
[(iﬂ‘f’ . (e2e,)%+ D, kn(2(e2e?)°—(e2)?) la,+| [ iQ
n
1 1/2 2

+ a)(eieg 2"' DnKn(2<e§e§>g_<e>2<ez>g) 2by, 710~ 7o 1+< < ant 2 §(§n+,8n)\n)+ 1_5(Xn_2)\n,8n)>
=[ha((eD)n—A(elen)n+(eD)n ((eD)n—(eDn) v 4 Qo .

(22) 15Bn n 1+(Q7‘2n)2( T2n I) . ( )

and the following expression for the hydrodynamic stress
O=2710V (23) It should be noted that the rheological equation of state for

the colloids containing only single ferroparticléwithout
chaing has no relaxation character.

710~ o

1
et 300 B (DD
el

2\0 2\0 2_2\0 L GIL
+:8n(<ez>n_<ex>n)+2()(n_Zhnﬁn)<exez>n]
a b
1 Tk . 0.135
* 5y o AUET+Bi(ele)D) 1 QB (Ax(eler)y ooz |-
0001 Lf o=
sBeed) || AN
0.125 | | |
0 Q
a, by, 5 10

T2v Y %2y FIG. 5. The same curves as in Fig. 4 for a single-patrticle colloid.
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V. NORMAL STRESSES

Using the above mentioned method, one can estimate th%
normal components of the stress tensor at the shear flow oF

the colloid. For example, let the field be aligned along the
axis Oz, the stationary velocityy of the colloid alongOXx,
and its gradient alon@y. By definition we note

1 duy

= E W =const.

Substituting Eq(13) into Egs.(16) and(17), for station-
ary flow in the linear approximation im, one obtains

bxy:B biix’quy:akzo, (25)

14
n Dl'
(ef)n—2(ezel)n Dy

" 3(efed)o+ kn(efele,)d Dn’

n

T

Dj=——F—.
! 8masny,

Using Egs.(13) and(22) in Eqg. (10), after simple calcu-
lations we have

V2

Uii:FiﬂoD—l, i=X,z, (26)

F= ; [ pn<e>2<e)2/>g+ 2(xn— ZBn)\n)<e§e§e§>g]Bnngn )

szzn: {[_Pn+2(§n+,8n)\n)+2,8n]<e>2<e)2/ g

+2(xn— 2:8n)\n)<e§e§ g}Bnngn )

Fy:; {[_Pn+2(§n+Bn)\n)_2Bn]<e>2<e§ g

+2(xn— Zﬂn)\n)<e>2<e§>g}8nngn .

F,

i

30

FIG. 6. The parameteis; calculated from Eq(26) as functions
of the external magnetic field when= 3. (b) Solid line corresponds
to Fy, dashed line td-, .
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The results of calculations of parametérsare given in Fig.
One can see that for this geometry of figw, ,|>F,. Let

note that for colloids with only separate partickgs=0.

The normal stresses in ferrocolloids may be the cause of
the Weissenberg effect recently observed in the experiments
of Ref.[13]. It should be noted that the individual spherical
particles as well as sphericakithout field) droplike aggre-
gates cannot induce appearance of the normal stresses and,
therefore, the Weissenberg effect. Hence, the results of Ref.
[13] show that nonspherical, i.e., possibly, chainlike aggre-
gates can occur in nondilute ferrofluids.

VI. CONCLUSIONS

We have studied the effect of short, straight chains on the
effective rheological properties of ferrocolloids as well as the
characteristic time of hydrodynamic relaxation. If the exter-
nal magnetic field is parallel to the gradient of velocity, the
presence of the chains leads to a significant increase of both
the effective viscosity and time of hydrodynamical relax-
ation.

Due to the chains, the normal stresses can arise in a shear
flowing ferrocolloid. The magnitudes of these stresses in-
crease significantly in the weak or moderate magnetic field;
in a very strong field the stresses equal zero. The normal
stresses can induce the Weissenberg effect in ferrocolloids,
observed in experiments of Rdf13]. In the condition of
normal gravitation this phenomena is too weak. However it
is significant under conditions of low gravitation.

It should be noted that in the real ferrocolloids the shape
of chains is not exactly straight due to the action of thermal
fluctuations. For this reason, our calculations can be consid-
ered as an upper estimation for both the length of the chains
and for their effect on macroscopical properties of ferrocol-
loids. This is not a rough estimation when inequality
(n)<e is held (see Figs. 1, R At the same time, while
interpreting experimental results on the ferrofluid rheology it
is necessary to take into account that not only chainlike ag-
gregates can take place in these systems. For example, these
aggregates can be droplike, fractal, circlelike, etc. Besides
that, the real ferrocolloids, unlike our model, are polydis-
perse. Next, in the real ferrofluids interactions between the
chains, neglected here, can play a significant role in forma-
tion of the macroscopical properties. However, we believe
that it is reasonable to analyze the influence of different types
of heterostructures and the influence of polydispersity on
macroscopical properties of ferrofluids separately. This work
can be considered as an example of such model analysis.
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APPENDIX

The calculations lead to the following values of the equi-
librium moments:

(en=hiLy,
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o 1 1 4 2
<eiek>n:§(1_|_2)5ik+ E(SLZ_l)hlhk' S —

gn_(n2+1)nﬁ(’, nag’

1
(188)8=5 (L1~ La)(3ihy+ Sy hic+ Sigh) 2ay 8 2
Xn= ' 2 / + r!

NapBy N(N“+1)By nNay

1
+5(5L3=3Lphihjhy,

1 pn= —[2(ag— Bo) +3n(agag— BoBo) ],
<eiekelem>:5(1_2L2+|—4)(5ik5|m+5im5k|+5ik5|m) 3napBy
1 2 n 8 2
+g(BL2=5Ls= D)(hifdim+hihmdi Xn= o _ n
" nfagBy n(1+n?)By  nlap
+hihy Sgmt+ hihim i+ hihySim+hhydyi)
1 n’—1
+g(3=30L,+ 35 )hihghih, )\”:n2+1'
LJ:LJ(Kn), J:1,2,3,4, Here
1 - 2
Ll(X):COtI'(X)_;y Lz(X)—l_;Ll(X), —fw ds 5 —Jm ds
. 3 A Jo(n2+9Q" "% Jo (1+9)Q’
La(x) = +Li(0) = 2 La(X),  La(x)=1= > Ls(X).
, foc ds py fw ds
RS I i . a = —, — ,
The parameterg,- - - £, are given in Ref[10]: 0 0 (1+5)2Q 0 0—(n2+s)(1+s)Q
_ 1
a”_n_a(r)’ , foc sds ., fw sds
an= _—, — _—,
 Jo(1+92Q "% Jo (n?+s)(1+9)Q
_2(n*-1)
" n(n?ag+ o)’ Q=(1+s)yn’+s.
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